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Abstract. Recently we published a method to quantitatively assess a heterogeneity number V that indicates 
the variability of the absolute permeability in a core plug. At that time, however, we could not provide a 
suitable cut-off for V. Therefore, the risk remained that SCAL measurements could be conducted on 
samples with a local distortion dominating flow and water cut behaviour. Subsequent use of the extracted 
relative permeability data in a reservoir simulation model would cause the field behaviour to be dominated 
in the same way, generating significantly wrong forecasts. In the present study, more than 70 scenarios for 
synthetic heterogeneous core plugs were simulated to study the impact of heterogeneity onto flow 
parameters measured in SCAL experiments. Both Unsteady-State and Centrifuge experiments on these 
synthetic plugs were simulated in 3-D. Subsequently, the simulated production data were history matched 
with a newly developed AutoSCORES software package to extract the relative permeability and capillary 
pressure in an objective manner. A rigorous statistical analysis was applied to determine a cut-off value for 
the heterogeneity number V for each listed scenario. The cut-off proved to be strongly dependent on the 
number of samples available in a SCAL study. First experimental results of measurements on actual rock 
samples are in line with predictions. A table is presented to assist SCAL experimentalists in deciding which 
SCAL samples reliably can be used for a SCAL study unaffected by the effects of heterogeneities, based on 
V of a sample.

1 Introduction  

Special Core Analysis (SCAL) data are used as input in 
reservoir simulation models to predict long term oil and 
gas field behaviour as part of field development 
planning. State-of-the-art interpretation-by-simulation of 
the data, as well as conventional analytical data analysis 
(e.g. “JBN” [1], “Hassler-Brunner” [2]) requires the core 
plugs to be homogeneous. Today, no industry accepted 
methods exist to deal with heterogeneous plugs, while 
the common belief is that hardly any core plug is 
perfectly homogeneous. 

A serious problem develops when SCAL 
measurements are conducted on core plugs with a local 
distortion dominating flow and water cut behaviour. 
Subsequent use of the extracted relative permeability 
data in a reservoir simulation model would cause the 
field behaviour to be dominated in the same way, 
generating significantly wrong forecasts. The problem 
was addressed by several authors already many years 
ago [3, 4, 5], but only qualitative results were presented 
in the absence of a heterogeneity number at the time. 

Building on earlier work where we identified a 
heterogeneity number V [6], we now have conducted a 
detailed study into the effect of various possible 
heterogeneity scenarios onto measured relative 
permeability, such as stochastically distributed 

heterogeneities throughout the whole plug, a thin high-
permeability zone, etc. We used SCORES3D (a 3D 
version of license-free SCAL simulator SCORES [7, 8]), 
to study in total more than 70 synthetic scenarios, 
covering what we believe are typical heterogeneity 
occurrences in core plugs. 

The paper first discusses the general design of the 
study, clarifying the necessity to follow primarily a 
simulation approach. Subsequently, the heterogeneity 
scenarios are presented, followed by a discussion of the 
automatic history matching tool AutoSCORES we 
developed to achieve objective evaluations of the 
relative permeabilities impacted by the heterogeneities. 

Central to the work is the interpretation of the results 
following a rigorous statistical analysis. This is 
explained in detail in a separate Section. 

Finally, laboratory SCAL experiments are presented 
that were conducted in support of the analysis of the 
simulation study. 

2 General design of the study  

We will first present the outline for the study in 
determining a cut-off value for heterogeneity number V 
as it could happen in an ideal world where no budget or 
time restrictions play a role. Subsequently, we show how 



 

from this ideal study program we derived the workflow 
followed in this study. 

2.1 Ideal approach studying effect of heterogeneity on 
SCAL measurements on core plugs 

In an ideal, unconstrained world one could set up a 
measurement program with the following steps: 

1. Identify a base case set of perfectly 
homogeneous samples, i.e. samples with V=0. 
The heterogeneity number V is defined in our 
earlier paper [6] as 
 

                         𝑉 = 𝜎         (1) 

 
with d determined from an exponential 
correlation between porosity and permeability 
from routine core analysis (RCA) data and 
parameter a determined from a linear 
correlation between porosity and Hounsfield 
numbers from CT-images of the plugs. σHU is 
the standard deviation of the Hounsfield values 
in the CT-image of the plug.  
To improve the statistical accuracy of the 
selection, the set should consist of at least 10 
plugs, preferably 100 or more plugs (see 
Section 5). 

2. Collect samples with increasing V numbers and 
of different topologies (i.e. layered, or 
containing impermeable spots or streak, open 
vugs, etc.). At least 10, preferably 100 samples 
or more per chosen V and chosen topology are 
required for reliable statistics (see Section 5). 

3. Conduct RCA on all samples for porosity  and 
absolute permeability K. 

4. Conduct CT scanning on all samples to assess 
the individual V numbers, using Eq. 1. 

5. Restore wettability through aging at 
representative initial water saturation and 
conduct imbibition SCAL experiments on all 
samples with a combination of UnSteady-State 
(USS) for relative permeability and Multispeed 
Centrifuge measurements for capillary pressure. 
Note that although SCAL data are primarily 
used to determine relative permeabilities, the 
capillary pressure function needs to be 
determined to be able to account properly for 
end-effects in the measurements. 

6. Extract the water relative permeability krw, oil 
relative permeability kro and capillary pressure 
Pc using an interpretation-by-simulation 
technique. 

7. Determine the cut-off value for V, beyond 
which the extracted relative permeabilities are 
found to be significantly different from the 
homogeneous base case, using sample statistics. 

 
Clearly, the above approach is impossible to carry 

out because of practical limitations in time and budget. 

2.2 Approach followed in this study 

We have chosen to use synthetic core plugs constructed 
in software rather than real rock. The software employed 
is a newly developed extension into 3 dimensions of the 
license-free SCAL simulator SCORES built on DuMux 
[7, 8]. Simulations were conducted on a grid of 16 x 16 x 
50 grid blocks. The capabilities of SCORES3D are 
described in Section 4. Our workflow has been set-up 
staying close to the ideal approach discussed above: 

1. A homogeneous base case was defined as a 
core plug with K=10 mD, and =0.17. 
Relative permeabilities were defined using the 
Corey parameters listed in Table 1. We use the 
following Corey formulations for the water 
and oil relative permeabilities krw and kro 
respectively: 
 

       𝑘 (𝑆 ) = 𝑘 ( )      (2) 

 

       𝑘 (𝑆 ) = 𝑘 ( )       (3) 

 
 
A capillary pressure function Pc(Sw) was 
constructed similar to case 0, as used by Reed 
and Maas [9] (see also Gupta and Maloney 
[10]). 

2. A range of heterogeneity scenarios was built 
with SCORES3D, based on experience in the 
laboratory. In total more than 70 
heterogeneous plugs were constructed in 
software. Details of the scenarios are described 
in Section 3. 

3. RCA is replaced by a numerical approach to 
calculate the effective K and  for each 
synthetic plug. 

4. CT scans are replaced by numerical 
calculation of V for each scenario, i.e. each 
individual synthetic plug. 

5. SCAL is replaced by simulation in 3-D of each 
scenario using SCORES3D for a synthetic 

a. USS imbibition experiment with 2 
bump floods 

b. Multispeed Centrifuge imbibition 
experiment, with 6 speeds 

6. Data analysis was conducted 
a. Analytically - JBN [1] on selected 

scenarios to obtain an indication of 
the effect of V on the relative 
permeabilities. 

b. By interpretation-by-simulation - 
history matching using the newly 
developed numerical tool 
AutoSCORES to obtain relative 
permeabilities and Pc. 



 

7. A rigorous statistical analysis of the results has 
been carried out, using data sets of up to 1000 
AutoSCORES runs (thus simulating up to 
1000 laboratory measurements for a single 
synthetic plug). In this way cut-off values for 
V could be identified beyond which relative 
permeability data are significantly different 
from the perfectly homogeneous base case. 

Table 1. Corey parameters used for the scenario runs 

Swc Sor krwor krowc nw no 
0.1 0.2 0.3 1.0 5 3 

3 Details of scenarios  

More than 70 synthetic scenarios have been investigated 
in this study. An overview is presented in Tables 2a-2g. 

The base porosity (1) was set to 0.17, and the base 
permeability was set to 10 mD. Scenario A0 represents a 
perfectly homogeneous plug. The SCAL simulator 
SCORES3D has been fitted with a random number 
generator [11], to generate normally distributed 
porosities assigned randomly to each grid block. The 
absolute permeability in each grid block was then 
derived from a standard exponential correlation [6], 
while the capillary pressure in each grid block was 
derived through a Leverett-J correlation [6]. 

 
Table 2a. Characteristics of heterogeneity scenarios: no 

layers, : standard deviation of porosity distribution; eff: 
effective (average) porosity; Keff: effective permeability; V: 
heterogeneity number [6]. Note: 9.87x10-15 m2 = 10 mD. 

 

 
 

Id  2 eff Keff 
(10-15m2) 

V 

B1 .001 - .17 9.87 .02 

B2 .01 - .17 9.76 .21 

B3 .02 - .17 9.52 .44 

B33 .03 - .17 9.20 .69 

B34 .04 - .17 8.84 .99 

B4 .05 - .17 8.47 1.4 
 
 

Table 2b. Characteristics of heterogeneity scenarios: 
“speckled” plug (see text), : cut-off factor (see text) for 
standard deviation of porosity distribution; eff: effective 
(average) porosity; Keff: effective permeability; V: 
heterogeneity number [6]. Note: 9.87x10-15 m2 = 10 mD. 

 

 
 

Id  2 eff Keff 
(10-15m2) 

V 

C1 x1 - .12 2.52 .68 

C2 x2 - .16 8.53 .22 

C225 x2.25 - .17 9.13 .16 

C250 x2.5 - .17 9.51 .11 

C275 x2.75 - .17 9.70 .08 

C3 x3 - .17 9.79 .05 
 
 
Table 2c. Characteristics of heterogeneity scenarios: 2-

layers of equal thickness, : standard deviation of porosity 
distribution; eff: effective (average) porosity; Keff: effective 
permeability; V: heterogeneity number [6]. Note: 9.87x10-15 m2 
= 10 mD. 

 

 
 

Id  2 eff Keff 
(10-15m2) 

V 

D01 .001 .16 .17 8.73 .11 

D1 .001 .15 .16 7.77 .21 

D2 .01 .15 .16 7.69 .30 

D3 .02 .15 .16 7.50 .49 

D4 .05 .15 .16 6.71 1.4 

D5 .001 .19 .18 13.0 .21 

D6 .01 .19 .18 12.9 .30 
D7 .02 .19 .18 12.5 .49 
D8 .05 .19 .18 11.2 1.4 
D9 .001 .21 .19 17.7 .39 

D10 .01 .21 .19 17.5 .45 
D11 .02 .21 .19 17.1 .61 
D12 .05 .21 .19 15.2 1.5 

 
 

 
 
 
 
 



 

Table 2d. Characteristics of heterogeneity scenarios: plug 
with 3-layers of equal thickness, 2: porosity of middle layer;  
: standard deviation of porosity distribution; eff: effective 
(average) porosity; Keff: effective permeability; V: 
heterogeneity number [6]. Note: 9.87x10-15 m2 = 10 mD. 

 

 
 

Id  2 eff Keff 
(10-15m2) 

V 

E01 .001 .16 .17 9.12 .10 

E1 .001 .15 .16 8.47 .20 

E2 .01 .15 .16 8.38 .29 

E3 .02 .15 .16 8.19 .48 

E4 .05 .15 .16 7.34 1.4 

E5 .001 .19 .18 11.9 .21 

E6 .01 .19 .18 11.8 .31 
E7 .02 .19 .18 11.5 .50 
E8 .05 .19 .18 10.4 1.4 
E9 .001 .21 .19 14.9 .42 

E10 .01 .21 .19 14.8 .48 
E11 .02 .21 .19 14.4 .64 
E12 .05 .21 .19 13.0 1.6 

 
 

Table 2e. Characteristics of heterogeneity scenarios: plug 
with 3-layers, middle layer with 2 of about 4 mm thickness, 
: standard deviation of porosity distribution; eff: effective 
(average) porosity; Keff: effective permeability; V: 
heterogeneity number [6]. Note: 9.87x10-15 m2 = 10 mD. For 
layer with 2 = 0, σ2=0. 
 

 
 

Id  2 eff Keff 
(10-15m2) 

V 

F1 .001 .15 .17 9.50 .12 

F2 .01 .15 .17 9.40 .24 

F3 .02 .15 .17 9.19 .46 

F4 .05 .15 .17 8.27 1.4 

F5 .001 .19 .17 10.5 .16 

F6 .01 .19 .17 10.4 .27 

F7 .02 .19 .17 10.1 .47 
F8 .05 .19 .17 9.09 1.4 
F9 .001 .21 .18 11.3 .37 

F10 .01 .21 .18 11.2 .43 
F11 .02 .21 .17 10.9 .59 
F12 .02 .21 .17 9.82 1.5 
F13 .001 .0 .15 8.76 .37 
F14 .01 .0 .15 8.67 .43 
F15 .02 .0 .15 8.47 .59 
F16 .05 .0 .15 7.60 1.5 

 
  



 

Table 2f. Characteristics of heterogeneity scenarios: plug 
with 3-layers, middle layer with 2 of about 2 mm thickness, 
: standard deviation of porosity distribution; eff: effective 
(average) porosity; Keff: effective permeability; V: 
heterogeneity number [6]. Note: 9.87x10-15 m2 = 10 mD. For 
layer with 2 = 0 and with 2 = 0.5: σ2=0. 

 

 
 

Id  2 eff Keff 
(10-15m2) 

V 

G1 .001 .15 .17 9.70 .09 

G2 .01 .15 .17 9.60 .23 

G3 .02 .15 .17 9.37 .45 

G4 .05 .15 .17 8.38 1.4 

G5 .001 .19 .17 10.2 .12 

G6 .01 .19 .17 10.1 .25 

G7 .02 .19 .17 9.83 .46 
G8 .05 .19 .17 8.79 1.4 
G9 .001 .21 .17 10.6 .29 

G10 .01 .21 .17 10.5 .36 
G11 .02 .21 .17 10.2 .54 
G12 .02 .21 .17 9.15 1.4 
G13 .001 .0 .16 9.34 .25 
G14 .01 .0 .16 9.25 .33 
G15 .02 .0 .16 9.02 .52 
G16 .05 .0 .16 8.03 1.4 

G170 .001 .5 .19 49.6 3.9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2g. Characteristics of heterogeneity scenarios: plug 
with 3-layers, middle layer with 2 of about 0.3 mm thickness, 
: standard deviation of porosity distribution; σ2=0; eff: 
effective (average) porosity; Keff: effective permeability; V: 
heterogeneity number [5]. Note: 9.87x10-15 m2 = 10 mD. 

 

 
 

Id  2 eff Keff 
(10-15m2) 

V 

G17 .001 .5 .17 38.1 10 

G18 .001 .6 .17 53.1 11 

G19 .001 .7 .17 56.1 11 

G20 .001 .8 .18 56.5 11 
 

 
The B scenarios (Table 2a) represent heterogeneous 

core plugs without any layering, but with porosity 
normally distributed over the grid blocks (and therefore 
permeability follows a log-normal distribution [6]) 
throughout the whole plug. The standard deviation of the 
porosity distribution was varied as indicated. 

The settings for the standard deviation for the C 
scenarios (Table 2b) are shown as multipliers for . 
SCORES3D uses this information to adjust any porosity 
that would be selected by the random number generator 
to be outside e.g. 2, back to the value of 0.001, while 
setting all other porosity values to a flat value of 1 
(0.17). For that reason, the C scenarios are called 
“speckled”, because this is how these would show up in 
a CT image: many white spots representing impermeable 
spots. This is seen in the laboratory e.g. if disseminated 
pyrite or glauconite nodules are present. 

D scenarios (Table 2c) have two layers of equal 
thickness into the direction of flow, the porosity of the 
second layer was set to 2. E scenarios (Table 2d) have 
three layers of equal thickness, with the porosity of the 
middle layer set to 2 and for the third layer set equal to 
1. Scenarios F (Table 2e) and G (Table 2f) have a thin 
middle layer. Scenarios F13 through F16 and G13 
through G16 have a non-permeable layer into the 
direction of flow. 

Scenarios G170 (Table 2f), G17 to G20 (Table 2g) 
represent a core plug with a thin or very thin open 
fracture in the flow direction. Permeability in the 
fracture was set to 1000 times the base permeability. 

The heterogeneity number V is calculated internally 
in SCORES3D and listed in Tables 2a-2g as well. 

 
  



 

 

4 AutoSCORES  

As discussed above, we have developed AutoSCORES 
to conduct automatic history matching of SCAL 
laboratory experiments. AutoSCORES currently allows 
history matching of SS (Steady-State), USS, Centrifuge 
and Porous Plate experiments, simultaneously or in 
isolation. As part of AutoSCORES, the experiments (real 
or synthetic) are simulated with SCORES [7,8] in one 
dimension (SCORES1D) to account for the interference 
between capillary pressure and relative permeabilities. 

History matching is conducted by searching for the 
least square deviation between experimentally measured 
production data and production data generated by 
SCORES1D, through varying the input relative 
permeability and capillary pressure. The Levenberg-
Marqardt (LM) method [11] is used as search algorithm, 
similar as used by SENDRA [12, 13] or Cydar [14]. 

Input relative permeabilities are defined in a 6-
parameter Corey formulation (see Eqs. 2 and 3): Swc, 
Sor, krwor, krowc, no and nw. The relative 
permeabilities are then submitted as tables to 
SCORES1D. The saturation tables are refined near low 
relative permeability. 

The input capillary pressure is defined through a 
specially constructed 11 point table. We tested first LET 
[15] and other formulations [16] for capillary pressure 
but these proved to have insufficient flexibility to deal 
with very sharp bending imbibition capillary pressure 
curves as seen in the laboratory. Within SCORES1D all 
saturation tables are interpolated by monotonous cubic 
spline functions [17].  

The capillary pressure table is generated between 
Swc and 1-Sor, so it has two points in common with the 
Corey relative permeability formulation. This results in 
AutoSCORES searching for an optimal 6+9=15 
component “state vector” [11; Chapter 15.4] delivering a 
match between the experimental production curves and 
the production curves generated by SCORES1D. 

4.1 Brief overview of the design of AutoSCORES 

The LM method can be seen as a special strategy in a 
Newton-Raphson (NR) process that seeks the zero value 
of a function [11]. NR requires the calculation of the 
derivative of the function. For the case at hand, the 
function is constructed comparing a selection of points 
on the production curves generated by SCORES1D, 
against a corresponding set of points on the experimental 
(or synthetic as the case may be) production curves 
perturbed with a certain noise level [11; Chapter 15.1]. 
This selection is used to construct a so-called Chi-square 
function. The LM method then searches for the 
minimum Chi-squared value while varying the state-
vector. Generally, the selection of points consists of 
several 1000’s of data points Ndata (automatically 
selected within AutoSCORES)..  

The derivative consists of 15 partial derivatives, one 
for each component in the state vector. So-called 2-sided 
derivatives are used to increase stability of the search 
algorithm. 

For our study we conducted history matching of a 
USS and a multi-speed centrifuge (numerical) 
experiment simultaneously, requiring a base run and 30 
“derivative” runs per iteration, per experiment, so in total 
62 runs per iteration. The LM method usually converged 
after 5 to 10 iterations. 

A major advantage of this approach is that the 
minimum Chi-square has a known expectation value: 
this value is equal to Ndata [11; Chapter 5.1]. Searching 
for a minimum value of a function of a multicomponent 
state-vector can never be guaranteed to deliver the 
correct answer. A local minimum in the multi-
dimensional space can be found instead. However, at 
least wrong, way too large or too small, values found 
after convergence can be rejected, based on the 
expectation value and based on the known standard 
deviation of the Chi-square function. AutoSCORES 
rejects results deviating more than 4 standard deviations, 
corresponding to a probability of less than 0.006% for 
being a correct result. After testing, the convergence 
tolerance for Chi-square was set to 0.001, normalised to 
Ndata. For a tighter tolerance setting, the distributions of 
the extracted Corey parameters did not change 
significantly from the values found with 0.001. 

As an example, we present in Fig. 1 a typical 
matched production profile for a multispeed run as used 
in our study. The data of the (numeric) experiment 
include the noise added. The above mentioned 
convergence and tolerance settings clearly prove to be 
effective. 

 

 
Fig. 1. Example of AutoSCORES matching a production 

profile of a multi-speed imbibition experiment. Average water 
saturation is plotted as a function of time (s). 

 
In view of the large amount of AutoSCORES runs 

required for this study, dedicated hardware was set-up 
with two DELL R-815 32-core servers, with 128 GB 
memory each, which allows parallel processing of all 62 
runs per iteration. This brought about a significant 
reduction in run time. AutoSCORES was written in C++ 
and was run on a Windows platform that controlled the 
two servers for parallel processing. We found that the 
servers were not fully loaded during the LM iterations. 
This allowed us to run up to four Windows machines 
with AutoSCORES, in parallel, feeding the servers and 
we obtained thus a further reduction in turn-around time 
in this research project. AutoSCORES is designed to run 
also in sequential mode on a single Windows platform in 
case no massive amount of history matching is required. 



 

5 Statistical Analysis  

First, the performance of the tools (SCORES3D and 
AutoSCORES) developed in this study has been 
evaluated through statistical analysis. A short but 
excellent introduction to statistical data analysis can be 
found in Numerical Recipes [11]. 

A large number of simulations confirmed that 
SCORES3D produces stochastically distributed 
heterogeneities that we can be confident to follow a 
normal distribution which means that parametric 
statistics [18] can be used in data analysis. Subsequently, 
a Chi-squared (goodness of fit) test [11; Chapter 14.3] 
was used to test whether an observed distribution of 
parameters extracted by AutoSCORES, such as Corey 
parameters, deviated from a normal distribution having 
the same mean and standard deviation. 

A students t-test [11; Chapter 14.2] was used to test 
for significant differences between the heterogeneity 
scenarios (Tables 2a-2g) and a corresponding isotropic 
homogeneous base case scenario, see the example in the 
Section below. An F-test was conducted [11; Chapter 
14.2] to check for equal variances before the t-statistic 
could be calculated. The significance of the calculated 
statistics was evaluated against tables of significant test 
levels of the respective probability density distributions 
[19]. 

With the performance of SCORES3D and 
AutoSCORES proven statistically reliable, we proceeded 
to use the tools to study the impact of heterogeneity on 
SCAL parameters. 

5.1 Analysing the impact of heterogeneity 

Ignoring the effect of the V cut-off would allow the plug 
to be part of a SCAL program and its relative 
permeabilities and Pc to be extracted. The impact of the 
actual heterogeneities of a certain scenario Z therefore is 
best judged by comparing the relative permeabilities 
extracted for Z with the relative permeabilities extracted 
for a corresponding homogeneous base case A0_Z. 

A0_Z is a SCORES3D run with V=0, and 
permeability and porosity set equal to the effective 
permeability and porosity of scenario Za. 

As an example of how we investigated the 
heterogeneity cut-off values, we discuss here the B-
scenarios, representing a single layer with random scatter 
in  (Table 2a).  Each scenario was tested against the 
corresponding base case scenarios labelled A0_BX. For 
instance, consider heterogeneity scenario B1. According 
to Table 2a, the average porosity and permeability of B1 
are 0.17 and 9.87x10-15 m2 respectively. Therefore a 
                                                 
a Effective permeability of the synthetic heterogeneous sample 
was determined either by a separate 3-D simulation of brine 
injection into a fully brine saturated sample, or from the 
pressure drop in the simulated 3-D USS experiment at early 
times, given the known (inputted) end point of the oil relative 
permeability at initial water saturation. Both methods agreed 
within 0.25%. 

homogeneous run labelled A0_B1 was executed with 
SCORES3D with all grid blocks set to a single porosity 
and permeability value of 0.17 and 9.87x10-15 m2 
respectively. The results from the A0_B1 run would 
have been observed in the laboratory if the core plug 
indeed would have been perfectly homogeneous. Any 
differences between interpretation-by-simulation of 
A0_B1 and B1 therefore are directly the result of B1 
being heterogeneous. In Table 3 we present results found 
for the Corey nw parameter for all B scenarios. 

While testing AutoSCORES, a number of scenarios 
have been run with N different seeds for the noise added 
to the production data (see Section 4.1), with N set to 10, 
100 and even 1000 for selected cases. However, in a 
laboratory environment a realistic number of SCAL 
samples is likely to be much lower, and a case for N=3 
has been settled for in this example, i.e. small sample 
statistics shall be used in analysis. 

First a so-called null hypothesis H0 of "no difference 
between the average nw found for BX and A0_BX" is 
formulated and tested using a t-test (Table 3). The t-test 
considers the difference between two averages (X1 and 
X2), using the standard deviations (s1 and s2) and the 
number N of simulations in the SCAL experiment. The 
calculated t-value tcalc is then compared against the 
critical test value tcrit (at a 5% or 1% test level) found 
from a table of the t probability density distribution [19]. 
If we find tcalc ≤ tcrit then H0 stands and we accept there 
is no significant difference between the two scenarios. 
For tcalc > tcrit, H0 is rejected and we can be more than 
95% or 99% sure they are different. 

Consider scenario B4 vs. A0_B4: the calculated 
t=8.07 is greater than the 5% and 1% test levels having 
critical t95=2.78 and t99=4.60, i.e. we can be more than 
99% sure that B4 is different from the perfectly 
homogeneous A0_B4 scenario. However,  the remaining 
B-scenarios with the test levels we have decided for (5% 
and 1%), are not seen as significantly different from the 
equivalent perfect homogeneous scenario even for a 
coefficient of variation V close to 1. This may look as a 
surprising result but is closely related to the t-probability 
distribution and the calculation of the t-statistic. Both are 
very sensitive to the number of samples N if N is small, 
as shown in Table 4. 

In effect, with a larger number of samples, the 
accuracy improves with which the mean value of e.g. nw 
is determined. At improved accuracy, a statistical 
analysis will then detect reliably a smaller difference 
between nw of a heterogeneous plug and a homogeneous 
one [11; Chapter 14.2]. In the ideal case of 100 or more 
plugs, the t-distribution approaches the normal 
distribution having the minimal critical t95=1.96 and 
t99=2.58 and thus the maximum strength in testing the 
significance of difference between means. 

From the scenarios listed in Tables 3 and 4 it is clear 
that an increase in the number of samples from 3 to 10 
can reduce the cut-off for V to around 0.5. This means 
that only the three scenarios B1-B3 in Table 4 would 
qualify as homogeneous in SCAL measurements if 10 
samples were available. 



 

 

Table 3. Statistical test of the difference between Corey nw's calculated from different BX scenarios vs. their corresponding base 
case A0_BX at N=3. When the null hypothesis is 'True' the result is said to be non-significant (non-S), when it is 'False' the result is 

significant (S), i.e. the 2 scenarios are different. 

 

 

Table 4. Statistical test of difference between Corey nw's calculated from different B scenarios vs. their base case A0_BX at N=10. 
Compare with the cut-off value of V for N=3 in Table 3 above. 

 

 
  

Sta s c  → X1 X2 s1 s2 df tcalc. H0  Result H0  Result V
Scenario ID ↓ [5%] [5%] [1%] [1%]

B1 vs A0_B1 4.967 4.945 0.063 0.056 4 0.438 True non-S True non-S 0.021
B2 vs A0_B2 4.933 4.954 0.062 0.062 4 0.410 True non-S True non-S 0.21
B3 vs A0_B3 4.950 5.017 0.065 0.094 4 1.018 True non-S True non-S 0.44
B33 vs A0_B33 4.872 5.061 0.098 0.140 4 1.917 True non-S True non-S 0.69
B34 vs A0_B34 4.916 5.126 0.067 0.172 4 1.972 True non-S True non-S 0.99
B4 vs A0_B4 4.945 5.526 0.066 0.105 4 8.07 False S False S 1.37

Conditions : t 95  = 2.78 t 99  = 4.60 df=deg. of freedom
X 1  :  X 2  :   Avg BX s 1  :  s 2  :   Stdev BX
N 1 =N 2 =3

 Avg A0_BX  Stdev A0_BX

Sta s c  → X1 X2 s1 s2 df tcalc. H0  Result H0  Result V
Scenario ID ↓ [5%] [5%] [1%] [1%]

B1 vs A0_B1 4.967 4.945 0.063 0.056 18 0.799 True non-S True non-S 0.021
B2 vs A0_B2 4.933 4.954 0.062 0.062 18 0.748 True non-S True non-S 0.21
B3 vs A0_B3 4.950 5.017 0.065 0.094 18 1.859 True non-S True non-S 0.44
B33 vs A0_B33 4.872 5.061 0.098 0.140 18 3.50 False S False S 0.69
B34 vs A0_B34 4.916 5.126 0.067 0.172 18 3.60 False S False S 0.99
B4 vs A0_B4 4.945 5.526 0.066 0.105 18 14.7 False S False S 1.37

Conditions : t 95  = 2.10 t 99  = 2.88 df=deg. of freedom
X 1  :  X 2  :   Avg BX s 1  :  s 2  :   Stdev BX Avg A0_BX  Stdev A0_BX

N 1 =N 2 =10



 

 

Table 5. Cut-off values for V, per scenario, established for a small number of samples (N3). For plugs with V below the cut-off, 
heterogeneities will have a non-significant impact on the relative permeabilities extracted through interpretation-by-simulation of the 

SCAL experiments. 

Scenario Short description V cut-off  
B stochastically distributed Gaussian porosity distribution 0.9 
C “speckled” (see Section 3) core plug 0.2 
D dual layer in flow direction 0.15 
E three layers in flow direction, equal thickness 0.1 
F three layers in flow direction, middle layer thickness 4 mm 0.1 
G   [G1-G8] three layers, middle layer 2 mm 0.8 
G   [G9-G12] three layers, middle layer 2 mm, and of significantly higher porosity 0.1 
G [G13-G15] three layers, middle layer 2 mm, and impermeable 0.4 
open fracture one or more open fractures in flow direction 0 

 

6 Results on synthetic data  

A detailed analysis has been conducted on the 70+ 
scenarios listed in Table 2a-2g. Through interpolation 
and extrapolation of V versus tcalc, cut-off values were 
defined in a straightforward manner for scenarios B, C, 
D and G and listed in Table 5. 

The results for scenarios E and F proved to be more 
difficult to interpret. We noticed e.g. that scenarios E1, 
E2 and E3 showed False, while E4 showed True, i.e. E4 
is not significantly different from a homogeneous case 
with the same effective permeability and porosity, while 
E1-3 are different. A similar situation occurred for F1-4. 
This behaviour is due to the fact that with increasing , 
the E and F scenarios in the 1-4 sequence are changing 
character from a clearly layered system into a more 
evenly stochastically distributed porosity/permeability 
distribution. In other words: changing from E1 to E4, the 
core plug looks more and more like a B3 or B4 scenario. 
As shown in Table 5, the B scenarios have a very high 
cut-off, meaning that up to V=0.9 the samples behave 
like homogeneous samples. In fact, it will be impossible 
from CT images to make a distinction between an E4 or 
F4 scenario and a B4 scenario. Scenarios can only be 
used in determining a cut-off value for V if these can be 
recognised in the images in the first place. 

So, we interpret the results for the E and F scenarios 
as follows: if a layering is visible in the CT images, the 
cut-off is 0.1, both for E and F scenarios. 

Note that E and F scenarios represent three-layered 
plugs of which the middle layer has a thickness of 
several mm. The middle layer in the G scenarios has a 
thickness of only 2 mm (G1-G15). Our results indicate 
that for G1-G8, the cut-off is 0.8. In fact, G1 to G8, with 
only a small porosity difference between the middle 
layer and layers 1 and 3, behave similar to the B 
scenarios. However, if the middle layer has a porosity of 
at least 0.04 larger than layers 1 and 3, the cut-off is 0.1 
(G9-G12). 

For thin layers with no porosity, as modelled by G13-
15, we see a cut-off of 0.4. 

If the middle layer is an open fracture (G170 and 
G17-G20), the cut-off is basically zero: no plug with that 
scenario will behave like an unfractured, homogeneous 
plug. 

Finally, we investigated a limited number of 
sensitivities. We checked how the cut-off values would 
change for the B and G13-G15 scenarios if absolute 
permeability was set to 1 mD, 100 mD and 1000 mD, or 
if the capillary pressure was changed to a much sharply 
bent imbibition curve, i.e. an imbibition curve showing 
hardly any spontaneous water imbibition. We found no 
significant difference with the cut-off values seen before. 

We have not tested sensitivity with respect to the 
chosen Corey parameters. At first glance, a change of 
e.g. a water Corey exponent from 5 as used in this study 
to 3 would bring about a higher water mobility and 
therefore could accelerate break-through. However, 
since in our scenarios, all layers have the same Corey 
parameters, the overall net effect is probably of second 
order: all layers would see similar acceleration of break-
through, cancelling a net effect. 
 

7 Laboratory experiments 

In support of conclusions derived from synthetic data, 
USS laboratory experiments were conducted with gas-
brine in drainage mode. Out of a set of 12 Oberkirchener 
(OBKN) sandstone samples, three samples were selected 
(G2, G3 and B2), with a porosity around 0.17 and 
permeability of about 10 mD. CT DICOM-images were 
analysed and we found that the heterogeneity numbers V 
for all three samples were around 0.26. Sample B2 (Fig. 
2) had two stylolites filled with higher density material, 
but still had overall porosity, absolute permeability and 
V similar to G2 and G3. Samples G2 and G3 had no 
stylolites or other distinct features observable by the 
naked eye or in CT images and therefore fall into a class 
B scenario. Sample B2 falls into a class G13 scenario. 
According to the results presented in Section 6, SCAL 
parameters extracted by AutoSCORES should deliver 
similar results for these three samples, given V0.26. 



 

The three samples were measured in UnSteady-State 
mode, at constant pressure drop as is customary for gas-
brine drainage experiments [20]. Gas was equilibrated 
with brine at injection pressure by bubbling the gas 
through a PanTerra-designed humidifier mounted in-line. 
The humidifier consists of two cylinders, partially brine 
filled that are connected at the bottom. Gas is injected at 
the top of one cylinder and escapes at the top of the 
other. Residence time of the gas in the brine is in the 
order of 20 to 2 seconds, dependent on the flow rate. 
Back pressure was set fixed at 190 psi, and initial 
pressure drop was set to 20 psi. This value was 
determined using SCORES as a design tool. In design 
mode, one uses guestimated relative permeabilities and 
capillary pressure. Relative permeabilities were chosen 
as typical for drainage in a water-wet plug (the OBKN 
plugs had been soxhlet-cleaned before the experiments) 
and the drainage capillary pressure was chosen similar to 
the curve found in OBKN centrifuge drainage 
experiments on other OBKN plugs several years ago. 

The experiments were run into a gas-brine separator 
that had been mounted upstream of the back-pressure 
regulator, so that this regulator only dealt with a gas 
flow. Production data were automatically recorded with 
a data logger connected to an electronic balance 
collecting the cumulative water production and to 
electronic gas flow sensors. Once that the gas-cut 
reached 99.95% (vol/vol, at standard conditions), the 
differential pressure was increased to 40 psi and 
subsequently to 100 psi, as bump floods, in order to 
reduce the capillary end-effects. The cumulative water 
production and gas flow rate of the USS experiments in 
conjunction with the production curve from the primary 
drainage centrifuge experiment mentioned before, were 
history matched with AutoSCORES.  

The centrifuge data were brought-in to constrain the 
results of AutoSCORES: i.e. the Corey parameters of 
relative permeability, together with an assessment of the 
drainage capillary pressure. Using 10 to 100 different 
seeds for the applied noise level in AutoSCORES, 
statistics were obtained for all parameters to allow 
assessment of similarity (the H0 hypothesis as 
mentioned in Section 5) between the three plugs. Tables 
6 and 7 summarise the results for the Corey parameters. 

Note that these experiments were conducted in 
primary drainage, so Srg does not play a role. Rather a 
percolation threshold exists that we assumed fixed at 
0.02. For the same reason the Corey parameter krwgr 
was fixed at 0.98. 

Except for krgwc, plugs B2, G2 and G3 are 
characterised by the same Corey parameters with a 
confidence level of 99%, despite the presence of 
impermeable stylolites in plug B2. This result is obtained 
using small number of samples statistics (N=3) as above. 
Analysis shows that in order to see a possible difference 
at confidence levels 95% and 99%, one would need 
some 10 plugs or more. 
 

 
 

 

Fig. 2. Sample B2 with two stylolites visible, and a CT 
tomogram of B2. The stylolites appear as white streaks in CT, 
because high densities are translated into white pixels. 



 

 

Table 6. nw, ng, krgwc, Swc results on OBKN G2 and G3, conditions similar to Table 3. σ: standard deviation. 

 

 

Table 7. nw, ng, krgwc, Swc results on OBKN B2 and G2, conditions similar to Table 3. σ: standard deviation. 

 

 
Krgwc is shown to be significantly different between 

B2 and the two other plugs. This parameter is derived 
mainly from the production data at the end of the 
experiment, i.e. from the last bump flood. The 
experiment on the G2 and G3 plugs were terminated 
earlier than on the B2 plug where we had additional 
focus on late time behaviour. This may well have caused 
salt precipitation in plug B2 to be more significant than 
in the G2 and G3 experiments. B2 showed a reduction in 
absolute permeability after the experiment of about 25% 
while G2 and G3 showed a reduction of only 5%. Note 
that the reduction in permeability is similar to the 
reduction observed for krgwc. We do not know when the 
reduction in permeability of B2 occurred, but if it indeed 
would have been during the later phase of the 
experiment, later time data would have been affected 
most. As a result, krgwc would then be strongly affected: 
AutoSCORES was not set to use the absolute 
permeability as an adjustable parameter, so a reduction 
in the lab of the absolute permeability translates into a 
correspondingly lower value for krgwc. If one would be 
allowed to correct for this effect, an adjusted value for 
krgwc of B2 would bring the H0 at the 5% level to True, 
i.e. no significant difference in krgwc can be observed 
anymore between B2 and the two other samples. 

Finally, it is of interest to note that the analytical JBN 
calculation on B2, G2 and G3 showed ng2 , nw3 and 
Swc0.2. Moreover, Dean-Stark extraction on the plugs 
after the experiments showed average final water 
saturations in the order of 0.2. This demonstrates how 
end-effects, even at high differential pressure in a gas-
brine drainage experiment may still dominate the results 
and that history matching the production data makes a 
real difference in interpreted results. 

8 Conclusions 

A cut-off value for the heterogeneity value V of a core 
sample represents the value beyond which flow 
parameters measured in SCAL experiments will be 
significantly affected by heterogeneity. When that 
happens, the plug needs to be discarded because no 
reliable SCAL data can be measured on that core plug. 
Using such data would compromise simulations on the 
field scale with possibly serious effects on development 
plans. 

In summary we have: 
 - Cut-off values for the heterogeneity number V have 

been defined now for many scenarios as these come 
about in laboratory practice. 

 - The cut-off value for V is strongly dependent on the 
heterogeneity scenario seen in CT images of plug.  

 - Layering in a plug strongly reduces the cut-off value 
for V. 

 - The recommended work flow is to conduct RCA and 
CT-scanning and establish the heterogeneity number 
V for all candidate plugs. Based on the observed 
heterogeneity scenario, the cut-offs presented in 
Table 5 can then be used to select the plugs that have 
V below the cut-off value. 

 - Cut-off values for V are dependent on the number of 
plugs available for a study. This is caused by the fact 
that if 10 or more plugs per flow unit are used, the 
critical test value for the evaluation of the student-t 
analysis changes substantially from the value used if 
only 3 samples are available. 

 - The first laboratory experiments to test the results 
derived for the synthetic plugs were promising. 

  

Sta s c : → Avg. G2 Avg. G3 σ(G2) σ(G3) df tcalc. H0  Result H0  Result
OBKN G2 vs G3: ↓ [5%] [5%] [1%] [1%]

nw 4.19 3.85 0.23 0.17 4 2.04 True non-S True non-S
ng 2.69 2.95 0.23 0.15 4 1.66 True non-S True non-S
krgwc 0.52 0.58 0.03 0.03 4 2.52 True non-S True non-S
Swc 0.05 0.05 0.02 0.01 4 0.04 True non-S True non-S

Sta s c : → Avg. B2 Avg. G2 σ(B2) σ(G2) df tcalc. H0  Result H0  Result
OBKN B2 vs G2: ↓ [5%] [5%] [1%] [1%]

nw 4.26 4.19 0.30 0.23 4 0.32 True non-S True non-S
ng 2.44 2.69 0.18 0.23 4 1.41 True non-S True non-S
krgwc 0.36 0.52 0.03 0.03 4 6.34 False S False S
Swc 0.06 0.05 0.03 0.02 4 0.65 True non-S True non-S



 

  A core plug with visible stylolites showed flow 
parameters similar to an unperturbed plug, as 
predicted by our heterogeneity analysis. 

 - AutoSCORES allows for history matching multiple 
experiments simultaneously. All SCAL laboratory 
experiments can be addressed. 

 
 
 
The CT-scans of the OBKN material were made available 
courtesy of Prof. Pacelli Zitha, TUDelft, and conducted 
expertly by Mrs. Ellen Meijvogel-de Koning. 

We acknowledge the accurate work by Xiangmin Zhang, 
PanTerra Geoconsultants, who conducted the UnSteady-State 
experiments. 
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