

CORE IMAGE PROPERTY LOGGING for rock typing and core-to-log upscaling purposes

Ulf Böker, Michael C. Drews, Kuncho D. Kurtev, Andrew C. Aplin

Caprocks JIP Objective: "To integrate seismic, petrophysical, rock mechanical and geochemical data to produce methodologies with which to (a) quantify seal risk and (b) define the rates, mechanisms and pathways by which petroleum migrates vertically through kilometre-scale sequences of fine-grained sediments."

Introduction

Nile Delta case study, offshore Egypt Pliocene slope channels + overbank Hemipelagites, turbidites, debris flows etc. Analyzed 650 m core in 4 priority wells

— 10 cm

Objective

Obtain grain size logs from core images

Motivation

Mudstone

% Clay

Integrated Rock Typing Approach

Integrated Rock Typing Approach

Rationale

Grain sizes from photographs?

Pixels in greyscale: 0 (black) to 255 (white) Ideal clay ($<2\mu m$): dark + uniform shading Ideal sand ($>63\mu m$): light + grain shadows ... how about silt (2–63 μm)?

Statistical parameters from pixel rows
Working hypothesis: horizontal bedding
Preprocessing: non-rock → white (255)
Generate parameter logs per row

Arithmetic average Mode and median Variance

Brightness logs

Coarseness logs

Grain size analysis of core plugs

Sampling and processing

Plugs taken after core slabbing, sampling bias on clay-rich strata Sample preparation: gentle saturation-freeze-thaw cycles Laser Particle Size Analyses

Model Calibration Workflow

Iterative approach

Use of data from single (reference) borehole

raw

200

Set sample depth offset

Set resolution of pixel curves

Clay [%] = $140 + 6.83 \cdot \text{Cl}_{ave} - 7.75 \cdot \text{Cl}_{med} - 0.242 \cdot \text{Cl}_{var} \mid R^2 = 0.95$ Sand [%] = $-8 - 0.796 \cdot \exp(\text{Cl}_{ave}/20) + 0.918 \cdot \exp(\text{Cl}_{med}/20) + 0.0675 \cdot \text{Cl}_{var} \mid R^2 = 0.99$

Image Log Harmonization Workflow

Compensation for differential core handling prior photography

Moisture-related issues Image duplication issues

Image Log Harmonization Workflow

Normalization and model limitations

Sampling bias: ≤ 20% sand grain size

Dark sandstone anomalies suspected (B19)

Commonly unimodal sandstone brightness

Results

Mudrock facies processing

Rock type QC via ternary grainsize diagrams

ANN electrofacies recognition

Conclusions

Grain size logs from core images

Robust empirical formulae for clay and sand modeling Linear function for moisture normalization Applications for mudrock characterization Sampling bias, dark sandstone issues

Fit-for-purpose core handling required

Post-slabbing plug samples required, reduce sampling bias Control plug depth & core moisture Avoid digital core image duplication (,stitching')

Applications & Outlook

Method supports rock typing in mud-rich sediments
Thin-bed analysis (net reservoir, frequency content)
Seal risk analysis (e.g. silt content), flow model applications
Bedding angle & (2D) object recognition, RGB processing...

